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Abstract
At exact resonance we derive the linear and quadratic invariants for time-
dependent coupled linear oscillators in the presence of second harmonic
generation. Employing these invariants we introduce an accurate definition
of the Dirac operators from which the wavefunctions in both coherent and
Fock (number) states representations are calculated. We also derive the
W -Wigner function of an arbitrary state at time t, evolving in the system
under consideration. Moreover we calculate the correlation coefficient between
position and momentum and we find that it is identical in both fields whatever
the state used.

PACS numbers: 02.20.−a, 02.30.Ik, 03.65.Fd

1. Introduction

In the last few decades the problem of time-dependent linear oscillators (variable mass and/or
variable frequency) has played a major role in the study of several phenomena of physics
[1–10]. A great deal of attention has been paid to some specific problems of time-dependent
oscillators: the damped linear oscillator and the strongly pulsating oscillator, for which the
mass is taken to be a function of time. For example in quantum optics one can see the quantum
treatment of a decaying oscillator that originated from an interest in a cavity oscillator in
which the electromagnetic field varies with time under the action of some reservoir as, for
instance, in laser production [11]. In fact these two specific problems have been handled
extensively in different directions by many authors by whom closed-form solutions of the
wavefunction in the Schrödinger picture as well as the equations of motion in the Heisenberg
picture are obtained in explicit and compact form, see for example [5–9]. Here we may also
refer to the problem of a sudden change in mass during which the observation of the squeezing
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phenomenon is reported [12]. It is interesting to note that the existence of the fluctuations
in the case of time-dependent mass is responsible for the second harmonic generation and
consequently one may expect to observe the squeezing phenomenon in one of the components
of the quadrature.

In the meantime the problem of weakly pulsating as well as damped pulsating oscillators
has also been considered, for which the dynamical operators and the wavefunction in the
Schrödinger picture have been obtained, however, under restricted conditions [13]. This
indicates that the problem of the time-dependent linear oscillator (variable mass or variable
frequency) is not an easy task to handle. However, one may avoid the direct consideration
of the problem and deal instead with the constants of the motion (invariants) [14–21]. In
this case the appearance of the well-known Ermakov–Pinney equation [22, 23, 27] which
is a nonlinear differential equation with variable coefficients should be expected. On the
other hand the construction of the invariant operators (constants of the motion) in quantum
mechanics has attracted much attention, for example the authors of [14] introduced in their
paper the role of these operators, which describe a quantum system governed by a time-
dependent Hamiltonian. They have shown that, if the system admits an invariant Î (t) among
its observables, it is possible to find a privileged basis of eigenstates of this operator for
which the expansion of the state vector on this basis can be performed with time-independent
coefficients. Recently Schrade et al have used this concept and employed the time-dependent
linear oscillator to construct an operator constant of the motion in order to discuss the Wigner
function in the Paul trap [24, 25]. Their discussions included the calculation of the correlation
coefficient between position and momentum which appears in the Schrödinger uncertainty
relation. The Hamiltonian model adopted in that work is given by

Ĥ (t) = p̂2

2m
+

1

2
ω2

0(t)mq̂2, (1.1)

where the frequency of the oscillator is considered to be time-dependent rather than constant
in order to discuss the Paul trap. In this paper we seek to handle a problem different to that
of reference [24, 25]. This problem is the interaction between two coupled oscillators under
the influence of second harmonic generation (degenerate parametric amplifier). We assume
that the coupling parameters between the fields as well as the self-coupling response of the
second harmonic generation are time-dependent. In this case the Hamiltonian governing such
a system takes the form

Ĥ = 1

2

2∑
i=1

[
p̂2

i

/
mi + ω2

i (t)miq̂
2
i + γi(t)(q̂i p̂i + p̂i q̂i )

]− λ(t)q̂1q̂2, (1.2)

where ωi(t) is the field frequency, mi is the mass, γi(t) and λ(t) are the parametric responses
of the second harmonic generation and the field coupling parameter, respectively. The above
Hamiltonian can be regarded as a generalization of the Hamiltonian model given in [24]. The
main purpose of this work is to find the time evolution of an arbitrary Wigner function and
to examine the effect of the time upon its behaviour. This can be achieved if one manages to
derive the explicit expression of the dynamical operators q̂ i and p̂i , i = 1, 2, or if we manage
to obtain the explicit solution of the wavefunction in the Schrödinger picture. This cannot be
done for any arbitrary functions of the time. However, if we employ the idea of the constants of
the motion, then we overcome any difficulty. For this reason we devote the following section
to considering the constants of the motion for the present system. This is followed by the
construction of the wavefunction in both the number states (Schrödinger picture) as well as in
the coherent states in section 3. In section 4 we calculate the Wigner function and in section 5
the phase space distribution function. The correlation coefficient is obtained in section 6 and
in section 7 we present our conclusions.



Wigner functions for time-dependent coupled linear oscillators via linear and quadratic invariant processes 883

2. Linear and quadratic invariants

We devote this section to determining the constants of the motion for the present system.
It is more advantageous to concentrate on finding the linear and quadratic invariants for the
Hamiltonian (1.2). First we consider the fundamental first-degree invariants.

2.1. Linear invariant

To determine the fundamental linear invariants we introduce a constant of the motion Î (1)(t)

such that

Î (1)(t) =
2∑

i=1

(ζi(t)p̂i + βi(t)q̂i), i = 1, 2, (2.1)

where ζi(t) and βi(t) are as yet unspecified functions of time. To establish that the operator
Î (1)(t) is a constant of the motion, one needs to find explicit expressions for the time-dependent
complex functions ζi(t) and βi(t). This can be achieved if we use the equation

dÎ (1)

dt
= ∂Î (1)

∂t
+

2∑
i=1

{
∂Î (1)

∂q̂i

∂Ĥ

∂p̂i

− ∂Î (1)

∂p̂i

∂Ĥ

∂q̂i

}
= 0. (2.2)

In this case, if one uses equation (1.2) together with equations (2.1) and (2.2), we have

dζi

dt
+ βi = γiζi,

dβi

dt
+ γiβi = ω2

i ζi − λζj , i �= j = 1, 2, (2.3)

and after eliminating βi(t) we obtain

d2ζ1

dt2
+ �2

1(t)ζ1 = λ(t)ζ2,
d2ζ2

dt2
+ �2

2(t)ζ2 = λ(t)ζ1, (2.4)

where �2
i (t) = [

ω2
i (t) − γ 2

i (t) − γ̇i (t)
]
, i = 1, 2. Now, if one manages to obtain the explicit

form of ζi(t), then it is easy to find the corresponding expression for the βi(t). There are two
classes of first-degree invariants which can be obtained. Thus we have

Î (1)
q (t) =

2∑
i=1

[ζi(t)p̂i + (γiζi − ζ̇i )q̂i] (2.5)

and

Î (1)
p (t) =

2∑
i=1

βi(t)q̂i +
{[

ω2
2(β̇1(t) + γ1β1(t)) + λ(β̇2(t) + γ2β2(t))

]
p̂1

+
[
ω2

1(β̇2(t) + γ2β2(t)) + λ(β̇1(t) + γ1β1(t))
]
p̂2
}/(

ω2
1ω

2
2 − λ2

)
, (2.6)

where overdot denotes differentiation with respect to the time. At the exact resonance, i.e.,
when ω1 = ω2 = ω, we have

Î (1)
p (t) =

2∑
i=1

{
βi(t)q̂i +

ω2(t)

[ω4(t) − λ2(t)]
[β̇i(t) + γiβi(t)]p̂i

}

+
λ(t)

[ω4(t) − λ2(t)]

2∑
i �=j=1

(β̇i(t) + γiβi(t))p̂j . (2.7)

Since we are dealing with a system of two coupled oscillators, to reach our goal we have
to construct from the constants of the motion two pairs of creation and annihilation operators
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playing roles similar to those of the Dirac operators. For this purpose we define the functions
ζi(t) as follows

ζ1(t) = k+(t) + k−(t) and ζ2(t) = k+(t) − k−(t). (2.8)

In this case the new functions k±(t) satisfy the equations

d2k+

dt2
+ �2

+(t)k+ = 0 and
d2k−
dt2

+ �2
−(t)k− = 0, (2.9)

where �2
±(t) = {�2(t) ∓ λ(t)} and we have assumed �2

1(t) = �2
2(t) = �2(t) (the exact

resonance case). Thus, if one uses equation (2.5), one can construct Dirac operators in the
form

Â1(t) = 1

2
√

h̄
[(γ1k+ − k̇+)q̂1 + (γ2k+ − k̇+)q̂2 + k+(p̂1 + p̂2)],

Â2(t) = 1

2
√

h̄
[(γ2k− − k̇−)q̂2 − (γ1k− − k̇−)q̂1 + k−(p̂2 − p̂1)].

(2.10)

It is easy to check that the above two operators satisfy the commutation relation[
Âi(t), Â

†
j (t)

] = δij , where δij is the Kronecker symbol, provided we take the Wronskian
W as

W = [k∗
±(t)k̇±(t) − k̇∗

±(t)k±(t)] = 2i, (2.11)

in which the subscripts ± vary independently in the first and second members of each term
and k±(0) = 1, and k̇±(0) = i. It should be noted that in our calculations and for simplicity we
have taken the mass to be unity. Now we turn our attention to consider the quadratic invariants
for the present system.

2.2. Quadratic invariants

To continue our progress we introduce a second-degree invariant Î (2)(t) of the form

Î (2)(t) =
2∑

i=1

[
ζ i(t)q̂

2
i + βi(t)p̂

2
i + 2γ i(t)q̂i p̂i

]
+ (µ1q̂1q̂2 + µ2p̂1p̂2 + µ3q̂1p̂2 + µ4p̂1q̂2)

(2.12)

which together with equations (1.2) and (2.2) would lead to the complicated situation in which
we would have to solve ten simultaneous differential equations. To avoid this complication it
is more convenient for us to diagonalize the Hamiltonian (1.2). This may be achieved under
the canonical transformation

p̂1

p̂2

q̂1

q̂2

 =


cos φ sin φ 0 0
−sinφ cos φ 0 0

0 0 cos φ sin φ

0 0 −sinφ cos φ




P̂ 1

P̂ 2

Q̂1

Q̂2

 , (2.13)

where [q̂i , p̂j ] = [Q̂i, P̂ j ] = δij , where δij is the Kronecker symbol. In this case the
Hamiltonian (1.2) takes the form

Ĥ (t) = 1

2

2∑
i=1

[
P̂ 2

i + �2
i (t)Q̂

2
i + γ (t)(Q̂iP̂ i + P̂ iQ̂i)

]
(2.14)

provided we take φ = π/4 and both of the response functions γi, i = 1, 2, are equal. The
augmented frequencies �i, i = 1, 2, are given by

�1(t) =
√

ω2(t) + λ(t), �2(t) =
√

ω2(t) − λ(t). (2.15)
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It is easy to realize that the Hamiltonian (2.14) is now separable and therefore we may
construct the quadratic invariant in the form

Î (2)(t) =
2∑

i=1

[
ζ i(t)Q̂

2
i + βi(t)P̂

2
i + 2µi(t)Q̂iP̂ i

]
, (2.16)

where ζ i(t), βi(t) and µi(t) are real functions of the time. This in fact leads to the system of
differential equations given by

d

dt
(ζ i) + 2γ (t)ζ i = 2�2

i (t)µi,

d

dt
(βi) − 2γ (t)βi = −2µi, (2.17)

d

dt
(µi) + ζ i = �2

i (t)βi .

Now, if we take βi(t) = k
1
2
i σ 2

i (t) where ki, i = 1, 2, are some constants, straightforward
calculation leads us to express our results in terms of auxiliary functions σi(t) that satisfy the
Ermakov–Pinney equation [22, 27]

d2σ1

dt2
+ �2

−(t)σ1 = 1

σ 3
1

,
d2σ2

dt2
+ �2

+(t)σ2 = 1

σ 3
2

, (2.18)

where the �±(t) are given by equation (2.9).
The solution of such type of equation can be written in the form [27]

σ(t) = (
ax2

1 + bx2
2 + 2cx1x2

) 1
2 , (2.19)

where x1 and x2 are two linearly independent solutions of

d2x

dt2
+ �2

±x = 0 (2.20)

and the constants a, b and c are related according to

w−2 = (ab − c2), w = x2
1

d

dt
(x2/x1). (2.21)

In this case we can construct the invariant

Î
(2)
Q (t) =

2∑
i=1

k
1
2
i

[
Q̂2

i

/
σ 2

i (t) + {σiP̂ i + (γ σi − σ̇ i )Q̂i}2
]
. (2.22)

Similarly, if we set ζ i = k
1
2
i ρ2

i (t), then we can construct another form for the second-
degree invariant as

Î
(2)
P (t) =

2∑
i=1

k
1
2
i

[
P̂ 2

i

/
ρ2

i (t) +

{
ρiQ̂i +

(
ρ̇i + γρi

�2
i (t)

)
P̂ i

}2
]

, (2.23)

where the auxiliary functions ρi(t) satisfy the equation

d2ρi

dt2
− 2

�̇i

�i

dρi

dt
+

(
�2

i (t) − γ 2 + γ̇ − 2γ
�̇i

�i

)
ρi(t) = �4

i (t)

ρ3
i (t)

, i = 1, 2. (2.24)

Now, if one uses equation (2.22), then it is possible to construct two pairs of Dirac
operators in the form

Âi(t) = 1√
2h̄

[
Q̂i

{
1

σi

+ i(γ σi − σ̇i)

}
+ iσiP̂ i

]
,

Â
†
i (t) = 1√

2h̄

[
Q̂i

{
1

σi

− i(γ σi − σ̇i )

}
− iσiP̂ i

] (2.25)
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which obey the usual commutation relation
[
Âi, Â

†
j

] = δij , where δij is the Kronecker symbol.
As the second task of this work is to find the wavefunction, this may be done if one uses either
equation (2.25) or (2.10). However, we use both equations in this paper. This is considered in
the following section.

3. The wavefunctions

In this section we turn our attention to find the wavefunction in both number states (Schrödinger
picture) and coherent states. To reach this goal we use the annihilation and creation operators,
Âi(t) and Â

†
i (t), given by equation (2.10) together with the coherent states

|α; t〉 = exp

[
−1

2
(|α1|2 + |α2|2)

] ∞∑
n1,n2=0

α
n1
1 α

n2
2√

n1!n2!
|n; t〉, (3.1)

where α = (α1, α2)
T and n = (n1, n2)

T . The eigenvalues of the operators Âi(t) with respect
to the coherent states are given by

Âi(t)|α; t〉 = αi(t)|α; t〉, i = 1, 2.

For the present case we have

ψα(q, t) = Nα(t) exp

[
− i

2h̄

{[
γ − d

dt
(log

√
k−k+)

] (
q2

1 + q2
2

)
+

d

dt
(log(k−/k+)) q1q2

}]
× exp

[
i√

h̄k+k−
{(α1k− − α2k+) q1 + (α1k− + α2k+) q2}

]
, (3.2)

where q = (q1, q2)
T and Nα(t) is the normalization constant which in general depends upon

time and can be obtained from the relation∫ ∞

−∞
|ψα(q, t)|2 dq = 1. (3.3)

After minor algebra we find that the normalization constant Nα(t) can be written in the
form

Nα(t) = 1

(πh̄)
1
2

|k+k−|− 1
2 exp

(
−1

2
[|α1|2 + |α2|2] +

1

2

(
α2

1k
∗
+

/
k+ + α2

2k
∗
−
/
k−
))

. (3.4)

Now, if one substitutes equation (3.4) into equation (3.2), we can obtain the wavefunction
in the number (Fock) states representation. Thus

ψn(q, t) = |k+k−|− 1
2

(πh̄)
1
2

2−(n1+n2)/2 (k∗
+/k+)

n1/2(k∗
−/k−)n2/2

√
n1!n2!

Hn1

(
(q1 + q2)

|k+|
√

2h̄

)
Hn2

(
(q2 − q1)

|k−|√2h̄

)
× exp

[
− i

2h̄

{[
γ − d

dt

(
log
√

k−k+

)] (
q2

1 + q2
2

)
+

d

dt
(log(k−/k+)) q1q2

}]
,

(3.5)

where Hn(.) is the Hermite polynomial of order n. Since k±(t) are the solutions of the
ordinary differential equations given by (2.9), our result in this case is too limited. However,
if we employ the Dirac operators (obtained from the second-degree invariants) for finding the
wavefunction in the Schrödinger picture, then we are able in this case to have more flexibility
in handling the present problem. This in fact is due to the dependence of the wavefunction
in the second case on the solution of nonlinear differential equations (the Ermakov–Pinney



Wigner functions for time-dependent coupled linear oscillators via linear and quadratic invariant processes 887

equation, (2.18) or (2.20)). Thus, after some calculation, we obtain the wavefunction in the
coherent state representation in the form

�α(q, t) = (πh̄)−
1
2

√
σ1σ2

exp

[
−1

2

2∑
i=1

(|αi |2 + α2
i

)]

× exp

{
1√
h̄

[(
α1

σ1
+

α2

σ2

)
q1 +

(
α2

σ2
− α1

σ1

)
q2

]}
× exp

{
− 1

4h̄

[(
σ−2

1 + σ−2
2

)
+ i

(
2γ − d

dt
(log(σ1σ2))

)] (
q2

1 + q2
2

)}
× exp

{
− 1

2h̄

[(
σ−2

2 − σ−2
1

)
+ i

d

dt
(log(σ1/σ2))

]
q1q2

}
(3.6)

and for the number (Fock) state representation we have

�n(q, t) = (πh̄)−
1
2

√
σ1σ2

2−(n1+n2)/2 1√
n1!n2!

Hn1

(
(q1 − q2)

σ1

√
2h̄

)
Hn2

(
(q2 + q1)

σ2

√
2h̄

)
× exp

{
− 1

4h̄

[(
σ−2

1 + σ−2
2

)
+ i

(
2γ − d

dt
(log(σ1σ2))

)] (
q2

1 + q2
2

)}
× exp

{
− 1

2h̄

[(
σ−2

2 − σ−2
1

)
+ i

d

dt
(log(σ1/σ2))

]
q1q2

}
. (3.7)

Having obtained the wavefunction in both the coherent and number state representations
we are in a position to calculate the W -Wigner function with respect to the coherent and
number states. This is treated in the following section.

4. Wigner functions

In the following we calculate the W -Wigner function by employing the wavefunctions for both
number state and coherent state representations obtained in the previous section. The Wigner
function can be calculated for an arbitrary state if one uses the relation

W(q,p, t) = 1

π2

∫ ∞

−∞

∫ ∞

−∞
dy1 dy2

2∏
j=1

�(qj − yj , t)�
∗(qj + yj , t) exp

2i

h̄

2∑
j=1

pjyj

 .

(4.1)

After lengthy but straightforward calculations we find that the W -Wigner function for the
coherent state representation takes the form

Wα(q,p, t) = 1

π2
exp

{
− 1

2h̄

[
(|f+|2 + |f−|2)(q2

1 + q2
2

)
+ 2(|f+|2 − |f−|2)q1q2

]}
× exp

{
− 1

2h̄

[
(|k+|2 + |k−|2)(p2

1 + p2
2

)
+ 2(|k+|2 − |k−|2)p1p2

]}
× exp

{
− 1

2h̄

[
(k+f

∗
+ + k∗

+f+) + (k−f ∗
− + k∗

−f−)
]
(q1p1 + q2p2)

}
× exp

{
− 1

2h̄
[(k+f

∗
+ + k∗

+f+) − (k−f ∗
− + k∗

−f−)](p1q2 + p2q1)

}
× exp

{
1√
h̄

[(α1f
∗
+ + α∗

1f+) + (α2f
∗
− + α∗

2f−)]q1

}



888 M S Abdalla and P G L Leach

× exp

{
− 1√

h̄
[(α2f

∗
− + α∗

2f−) − (α1f
∗
+ + α∗

1f+)]q2

}
× exp

{
1√
h̄

[(α1k
∗
+ + α∗

1k+) + (α2k
∗
− + α∗

2k−)]p1

}
× exp

{
− 1√

h̄
[(α2k

∗
− + α∗

2k−) − (α1k
∗
+ + α∗

1k+)]p2

}
× exp{−2[|α1|2 + |α2|2]} (4.2)

or the more compact form

Wα(q,p, t) = 1

π2
exp

{
−
∣∣∣∣( 1√

2h̄
[f−(q1 − q2) + k−(p1 − p2)] −

√
2α2

)∣∣∣∣2
}

× exp

{
−
∣∣∣∣( 1√

2h̄
[f+(q2 + q1) + k+(p2 + p1)] −

√
2α1

)∣∣∣∣2
}

, (4.3)

where we have defined

f ∗
± =

[
k∗
±

(
γ − d

dt
(log|k±|)

)
+

i

k±

]
, |f±|2 =

[
|k±|′2 + |k±|2

(
γ 2 − 2γ

|k±|′
|k±|

)]
(4.4)

and the prime denotes differentiation with respect to the time.
Similarly one can obtain the W -Wigner function for the number state representation if

one uses the identity

exp(ax + by + cxy) =
∞∑

m=0

∞∑
n=0

(by)m

m!

(cx

b

)n

L(m−n)
n

(
−ab

c

)
(4.5)

together with the coherent states given by equation (3.1). In the present case we find that

Wn(q,p, t) = (−)n1+n2

π2
exp

{
− 1

2h̄

[
(|f+|2 + |f−|2)(q2

1 + q2
2

)
+ 2(|f+|2 − |f−|2)q1q2

]}
× exp

{
− 1

2h̄

[
(|k+|2 + |k−|2)(p2

1 + p2
2

)
+ 2(|k+|2 − |k−|2)p1p2

]}
× exp

{
− 1

2h̄
[(k+f

∗
+ + k∗

+f+) + (k−f ∗
− + k∗

−f−)](q1p1 + q2p2)

}
× exp

{
− 1

2h̄
[(k+f

∗
+ + k∗

+f+) − (k−f ∗
− + k∗

−f−)](p1q2 + p2q1)

}
×Ln1

(
1

h̄
|f+[q2 + q1] + k+[p2 + p1]|2

)
Ln2

(
1

h̄
|f−[q1 − q2] + k−[p1 −p2]|2

)
,

(4.6)

where Ln(.) is the Laguerre polynomial of order n. Alternately we may obtain another
expression for the Wigner function using equations (3.6) and (3.7). For the coherent state
representation in this case we have

Wα(q,p, t) = 1

π2
exp

−
2∑

j=1

∣∣∣∣(zj (t)√
h̄

−
√

2αj

)∣∣∣∣2
 , (4.7)

where zj is a complex quantity defined as

zj (t) = [
σ−1

j (t) + i(γ σj (t) − σ ′
j (t))

]
Qj + iσj (t)Pj , j = 1, 2, (4.8)
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and the Qj and Pj are given by equation (2.13), while σj is a solution of the Ermakov–Pinney
equation (2.18). For the number state representation we have the expression

Wn(q,p, t) = (−)n1+n2

π2
exp

[
−1

h̄
(|z1(t)|2 + |z2(t)|2)

]
Ln1

(
1

h̄
|z1(t)|2

)
Ln2

(
1

h̄
|z2(t)|2

)
.

(4.9)

It should be noted that to obtain the probability density, |�̃(q, t)|2, of finding the position q
one needs to integrate the W -Wigner function along a path, which is parallel to the momentum
axis and which goes through q, such that

|�̃(q, t)|2 =
∫ ∞

−∞
W(q,p, t) dp. (4.10)

Similarly, to obtain the probability density |�̃(p, t)|2 of finding the momentum p one
needs to integrate the W -Wigner function along a path, which is parallel to the position axis
and through p, such that

|�̃(p, t)|2 =
∫ ∞

−∞
W(q,p, t) dq. (4.11)

In the forthcoming section we employ the W -Wigner function to calculate both the phase
distribution function Rθ,φ and the distribution function Rα .

5. Phase space

To calculate the phase space distribution function one may evaluate the integral

Rθ1,θ2(q,p, t) =
∫ ∞

−∞

∫ ∞

−∞
Wα(q,p, t)|α1||α2| d(|α1|) d(|α2|). (5.1)

As before we introduce two expressions. One is related to the linear invariants while the
other is related to the two quadratic invariants. For the first case a straightforward calculation
leads to

Rθ1,θ2(q,p, t) = 1

16π2
exp

[
−1

h̄
(|z+|2 + |z−|2)

] [
1 − 2β+ exp

(
β2

+

)
erfc(β+)

]
× [1 − 2β− exp(β2

−) erfc(β−)], (5.2)

where

z+ = 1√
2
[f+(q2 + q1) + k+(p2 + p1)], z− = 1√

2
[f−(q1 − q2) + k−(p1 − p2)] (5.3)

and erfc(β±) is the complement of the error function erf(β±) given by

erf β± = 4

π

∞∑
k=0

(−)k
(β±)2k+1

k!(2k + 1)
, β± = − z±√

h̄
cos θ± (5.4)

and θ± is the phase factor for the coherent states.
A similar expression is found from the quadratic invariants as

Rθ1,θ2(q,p, t) = 1

16π2
exp

[
−1

h̄
(|z1|2 + |z2|2)

] [
1 − 2β1 exp

(
β2

1

)
erfc(β1)

]
× [1 − 2β2 exp

(
β2

2

)
erfc(β2)

]
, (5.5)

where zi, i = 1, 2, are given by equation (4.8) and βi, i = 1, 2, have the same meanings
as β± .
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On the other hand, we can evaluate the distribution function

Rα(q,p, t) =
∫ ∞

−∞

∫ ∞

−∞
Wα(q,p, t) d(Im(α1)) d(Im(α2)). (5.6)

For the linear invariant case and after straightforward calculation we have

RRe(α)(q,p, t) = 2

π
exp

[
−2

([
u1 − 1

4
F+(q,p, t)

]2

+

[
u2 − 1

4
F−(q,p, t)

]2
)]

, (5.7)

where

F+(q,p, t) = 1√
h̄

[(f+ + f ∗
+ )(q1 + q2) + (k+ + k∗

+)(p1 + p2)],

F−(q,p, t) = 1√
h̄

[(f− + f ∗
−)(q1 − q2) + (k− + k∗

−)(p1 − p2)]
(5.8)

and (u1, u2) are the real parts of the components of the coherent states α.

6. Correlation coefficient

Before we consider the correlation coefficient we first use the W -Wigner representation to find
the rotated variances �xφ and �pφ for each mode. To do so we define the rotated coordinates
and momenta as

xi = xφi
cos φi − pφi

sin φi, pxi
= pφi

cos φi + xφi
sin φi, i = 1, 2, (6.1)

where

x1 = (q1 − q2)√
2

, x2 = (q1 + q2)√
2

, px1 = (p1 − p2)√
2

and px2 = (p1 + p2)√
2

.

(6.2)

Therefore, if one uses equation (4.3), equation (6.2) yields

�xφ1 = [|f−|2 cos2 φ1 + |k−|2 sin2 φ1 + 1
2 (f−k∗

− + f ∗k−) sin 2φ1
]− 1

2 ,

�pφ1 = [|f−|2 sin2 φ1 + |k−|2 cos2 φ1 − 1
2 (f−k∗

− + f ∗k−) sin 2φ1
]− 1

2 ,

(6.3)

where

φ1 = 1

2
tan−1

(
(f−k∗

− + f ∗
−k−)

(|f−|2 − |k−|2)
)

. (6.4)

Similar expressions can be obtained for the second mode provided we replace the sign (−) by
(+) in the above equations.

The widths �xφ1 and �pφ1 , equation (6.3) of the Gaussian in the rotated system, reduce
to

�xφ1 =
√

2[(|f−|2 + |k−|2) +
√

(|f−|2 − |k−|2)2 + (f−k∗− + f ∗−k−)2]−
1
2 ,

�pφ1 =
√

2[(|f−|2 + |k−|2) −
√

(|f−|2 − |k−|2)2 + (f−k∗− + f ∗−k−)2]−
1
2 .

(6.5)

Moreover one can see from equation (6.5) the phase space area �xφ1 · �pφ1 = 1, which
is independent of time.

It is well known that the Wigner function of a Floquet state |n; t〉 rotates in phase space
and it becomes squeezed in one direction and elongated in the orthogonal direction. This
rotation and squeezing phenomenon leads to a correlation between position and momentum.
Indeed the position qi and the momentum pi are uncorrelated in the wavefunctions at time
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t = 0. However, at later times they are coupled in the quadratic form |zi |2, i = 1, 2, of (4.8)
via the cross term proportional to qipi, or coupled in the quadratic form |z±|2 of (5.3). The
two conjugate variables, qi and pi , can be expressed in terms of the correlation coefficient
[28] as

ri =
1
2 〈(q̂i p̂i + p̂i q̂i )〉 − 〈q̂ i〉〈p̂i〉√

δqiδpi

, i = 1, 2, (6.6)

where

δqi =
√〈

q̂2
i

〉− 〈q̂ i〉2, δpi =
√〈

p̂2
i

〉− 〈p̂i〉2. (6.7)

For the first field and after straightfoward calculations the nominator �1 (say) in
equation (6.6) is

�1 = i

2
+

1

4
[k+(k̇

∗
+ − γ (t)k∗

+) + k−(k̇∗
− − γ (t)k∗

−)], (6.8)

while the denominator ϒ1 (say) is

ϒ1 = 1
4 [(|k+|2 + |k−|2)(|k̇+ − γ (t)k+|2 + |k̇− − γ (t)k−|2)] 1

2 , (6.9)

where we have taken � = 1. It is easy to realize that the cross term is dominant in the
denominator ϒ1.

From equations (6.8) and (6.9) together with equation (6.6) the correlation coefficient r1

can be obtained. It should be noted that the expression of the correlation coefficient for the
second-mode case is identical to that of the first-mode case. Moreover we emphasise that
the correlation coefficient does not depend on the nature of the state which used to calculate
the expectation value of the momenta and the coordinates.

Now suppose we consider the case in which the response function, γ (t), is a constant
as well as the difference between the square of the field frequency, ω(t), and the coupling
parameter, λ(t), is also a constant, ω2

0 (say). In this case we have

(i)
d2k+

dt2
+
(
ω2

0 − γ 2
)
k+ = 0 and (ii)

d2k−
dt2

+
(
ω2

0 − γ 2 + 2λ(t)
)
k− = 0. (6.10)

The first equation is just a simple harmonic motion while the second is the modified
Mathieu’s equation provided we adjust the coupling parameter to take the form [29]

λ(t) = 1
2 (µν2 sin νt − µ2ν2 cos2 νt), (6.11)

where µ and ν are two arbitrary parameters. In order to solve equation (6.10) we first replace
k− by U and substitute (6.11) into (6.10). Thus

d2U

dt2
+
(
ω2

0 + µν2 sin νt − µ2ν2 cos2 νt
)
U = 0, (6.12)

where ω2
0 = (

ω2
0 − γ 2

)
.

By introducing the differential equation

d2W

dt2
+
(
ω2

0 − µν2 sin νt − µ2ν2 cos2 νt
)
W = 0 (6.13)

we are able to split both equations into two coupled first-order differential equations as follows.
We have
dU

dt
= ω0W + �(t)U,

dW

dt
= −�(t)W − ω0U with �(t) = µν cos νt. (6.14)

Now, if we introduce the complex quantity A = U + iW, (6.14) becomes

dA

dt
= −iω0A + µν cos νtA∗ and

dA∗

dt
= iω0A

∗ + µν cos νtA. (6.15)
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After some manipulation we can write the general solution of equation (6.12) as

k−(t) = C1

(
cos(ν/2)t

[
cosh ρt +

µν

2ρ
sinh ρt

]
+

η

ρ
sinh ρt sin(ω0 + η/2)t

)
+ C2

(
sin(ν/2)t

[
cosh ρt − µν

2ρ
sinh ρt

]
− η

ρ
sinh ρt cos( ω0 + η/2)t

)
,

(6.16)

where we have used the abbreviations

ρ = 1
2

√
η2 − µ2ν2, η = (ν − 2ω0). (6.17)

It should be noted that to obtain the previous result we have applied what is called the
rotating wave approximation in which we have neglected the rapidly oscillating term compared
with the slowly oscillating term. This is a standard procedure and is justified by the close
approximation to zero of a high frequency slowly modulated wave when integrated over an
interval comparable to the period of the modulated wave.

7. Conclusion

In this paper we have treated the problem of the construction of the Wigner functions for time-
dependent coupled linear oscillators through the use of the linear and quadratic invariants which
can be constructed in certain cases of relationships between the time-dependent parameters of
the system. Specifically we considered the case of exact resonance in the presence of second
harmonic generation. Under these conditions the invariants exist and can be used to construct
the Dirac operators which provide the solutions for the wavefunctions in both the coherent and
Fock states representations. With the construction of the Wigner states we are able to proceed
to the calculation of the correlation functions.

In the calculation of the correlation functions we presented a precise result based on a
specific choice of the nature of the time-dependent in the parameters of the system. The ability
to do this is not confined to the functions chosen above.

We may introduce another viewpoint for dealing with the time-dependent frequency and
time-dependent coupling parameter. For example, if we choose both of them such that

ω2(t) = (
ω̃2

0 − 1
2µ2ν2 cos 2νt

)
, λ(t) = µν2 sin νt, ω̃2

0 = (
ω2

0 − γ 2 − 1
2µ2ν2

)
,

(7.1)

in this case we have that

(i)
d2k+

dt2
+
(
ω2

0 − µν2 sin νt − µ2ν2 cos2 νt
)
k+ = 0, (7.2)

and

(ii)
d2k−
dt2

+
(
ω2

0 + µν2 sin νt − µ2ν2 cos2 νt
)
k− = 0. (7.3)

The above two equations can each be regarded as a modified Mathieu’s equation. They
have a general solution when we apply the rotating wave approximation of the form

k−(t) = k−(0)

{
cos

(ν

2
t
) [

cosh ρt +
µν

2ρ
sinh ρt

]
+

η

ρ
sinh ρt sin

(ν

2
t
)}

+ k+(0)

{
sin
(ν

2
t
) [

cosh ρt − µν

2ρ
sinh ρt

]
− η

ρ
sinh ρt cos

(ν

2
t
)}

(7.4)
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and

k+(t) = k+(0)

{
cos

(ν

2
t
) [

cosh ρt − µν

2ρ
sinh ρt

]
+

η

ρ
sinh ρt sin

(ν

2
t
)}

− k−(0)

{
sin
(ν

2
t
) [

cosh ρt +
µν

2ρ
sinh ρt

]
− η

ρ
sinh ρt cos

(ν

2
t
)}

, (7.5)

where ρ is given by equation (6.17). It should be noted that to obtain this and the previous
result we have applied the rotating wave approximation, where we have neglected the rapidly
oscillating term exp[i(ν + 2ω0)] compared with the slowly oscillating term exp[i(ν − 2ω0)].

Our approach here has been to look at the selection of conditions—the exact resonance,
for example—based on physical principles which enable further progress of the analysis. We
hope to report on a more algorithmic approach in the near future.
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